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Abstract

We present an analytic solution for the B1 field produced in a gapped toroidal cavity resonator designed as a probe for high
field MRI. This resonator supports standing TEM waves, so its electric and magnetic fields are identical to those produced by a
stationary planar current source with the same (constant) cross-section multiplied by a complex exponential propagation factor.
An explicit expression for the field may therefore be found by solving Laplace�s equation for the static potential, which is accom-
plished with a two-dimensional logarithmic conformal transformation algorithm. The equipotential curves are also the contours
of the field strength B, and the B (vector) field at any point is directed along the contour passing through that point. With this
information, we construct the solution by computing the angle made by the equipotential curve with the horizontal axis at each
point, using this angle to analyze the B field into its x and y components, and adding the contributions from the current sources
to obtain the magnitude and direction of B at each point in the region of interest. Some proposed extensions of this algorithm are
also discussed.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Image quality in MRI depends sensitively on B1

homogeneity and signal-to-noise ratio (SNR), which de-
pend in turn on the performance of the radiofrequency
(RF) coil. As ultrahigh B0 fields (up to 9.4 T in whole-
body systems, with 11.7 T approved for human re-
search) are introduced to exploit higher SNR [1],
birdcage coils, which at present are the standard clinical
MRI volume coils, become inadequate as radiative
losses, end effects, and inductance effects become impor-
tant [2,3]. Partially enclosed cavity resonators [4,5] and
microstrip resonators [2] have been introduced to over-
come some of these limitations. Predicting optimal RF
design characteristics also becomes more difficult at
ultrahigh fields because most modeling techniques make
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approximations that fail as the operating wavelength ap-
proaches, or even becomes smaller than, characteristic
human anatomical dimensions [6–8].

In this paper, we examine the gapped toroidal cavity
resonator [9] as presented in a patent by Vaughan [10]
and which has been used, for example, for human stud-
ies at 4.1 T at the University of Alabama at Birmingham
(UAB) [11]. Its most significant advantages for ultrahigh
field MRI, high Q and B1 field uniformity, have been
demonstrated previously, operating at 175 MHz [12–
16]. While it cannot be driven in quadrature, its high effi-
ciency appears to compensate more than adequately
for this limitation at high field. Its bulky configuration
also limits its possible applications: if the extent and
bulk of the gapped toroid can be reduced without sig-
nificant distortion to the B1 field, it may find more gen-
eral MRI applications. Having an analytic solution for
the B1 field of the gapped toroid provides some of the
information necessary to reconfigure the resonator to
this end.
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1.1. RF modeling and field computation in MRI

Mathematically modeling an MRI coil positioned in
the bore of a magnet and electrically coupled to a sam-
ple is a sufficiently complex task to require an array of
approximations and simplifications, the choice of which
will profoundly influence the applicability of the model.
Several approaches for modeling selected MRI coil con-
figurations have appeared in the literature. These in-
clude both analytic solutions of the applicable
equations with appropriate boundary conditions, and
numerical techniques including finite elements and the
method of moments, among others, to simulate the
fields produced by a given distribution of sources.
Although analytic solutions are hard to find for all but
the most simple configurations, they have the advan-
tage, unlike purely numerical solutions, of providing
physical insight into the nature of the problem, impor-
tant because many aspects of RF behavior germane to
ultrahigh field MRI remain poorly understood [17, pp.
51–55;18, p. 167]. In addition, an analytic solution is of-
ten computationally advantageous over iterative meth-
ods, even if it serves to solve only one step of the
problem. Sometimes it is advantageous to solve a simpli-
fied version of the problem analytically, for example, a
coil without a sample or with a geometrically symmetric
sample, afterwards extending the result to a realistic hu-
man sample using a numerical algorithm. Solutions of
this kind, as well as fully analytic solutions, have ap-
peared in the literature [6,19–21].

Early in the history of MRI coil development, Roméo
and Hoult [22] derived a general field solution to La-
place�s equation in terms of zonal harmonics. Cylindri-
cal geometry was addressed by Foò et al. [18], who
modeled the load, RF coil, and shield as three infinitely
long coaxial cylinders. By thus ignoring end effects, they
reduced the problem to two dimensions. This model per-
mits transverse electric (TE) and transverse magnetic
(TM) solutions in terms of Bessel functions, and thus
is limited by the fact that most MRI volume coils reso-
nate in transverse electromagnetic (TEM) mode, which
cannot be sustained in simply connected regions such
as hollow pipes. Nevertheless, they show how a two-di-
mensional technique can be applied to a geometry of
constant cross-section if end effects can be neglected.
Keltner et al. [23] computed the fields for a surface coil
adjacent to a spherical load at high field using a multi-
pole expansion in spherical Bessel functions. This ap-
proach was amplified by Liu and Crozier [24], using a
human head model comprising seven concentric layers.
A bilinear conformal transformation provided the first
stage in the TEM mode solution developed by Crozier
et al. [20]. For both unshielded and shielded birdcage
coils, they mapped the two-dimensional cross-section
of the resonator onto a plane in which all rungs of the
birdcage are aligned with the real axis. The electrostatic
potential on the transformed geometry is readily found,
and is used as the basis for a numerical algorithm to cal-
culate the current density on each rung. Finally, they
compute B from the current density. Jin et al. [7] devel-
oped a numerical method using a biconjugate gradient
algorithm for fields inside a realistic head model, noting
that certain inaccuracies arise when a finite element
model is used. Leifer [25] derived a complete analytic
solution for the modes of a birdcage coil operating at
relatively low MRI frequency. A mixture of analytic
and numerical techniques was used by Alecci et al. [21]
to model a load having internal structure within the coil.
Another approach, justifiable on certain geometries, is
the use of transmission line methods, performed by Cas-
sidy et al. [26] and Bogdanov and Ludwig [27]. More re-
cently, Chin et al. [28] have presented a thorough
treatment of the birdcage coil using methods based on
circuit concepts. These solutions use well-understood
electromagnetic principles and mathematical techniques
that can be made very detailed as well as very accurate.
However, circuit theory is intrinsically approximate, and
becomes increasingly inappropriate with increasing
operating frequency. As the wavelength approaches hu-
man dimensions, adequate modeling requires that we
begin directly with Maxwell�s equations and make sim-
plifying assumptions appropriate to the device being
modeled.

We present here a purely analytic solution, using a
method roughly analogous to that given by Crozier
et al. [20] for the birdcage coil: we make the simplifying
assumption that the resonator contains no sample and
operates in TEM mode. There the problem can be
solved on a two-dimensional cross-section, where the
transverse magnetic field of a TEM resonator can be
represented as a static field multiplied by a complex
propagation factor. The static field is obtained from a
potential found by solving the two-dimensional La-
place�s equation on that plane. In accord with general
usage, the italicized B represents the magnitude only
of the magnetic field, and the boldface B the vector
quantity.

The gapped toroid, shown in perspective in Fig. 1, is
a multiply connected reentrant cavity resonator [29, p.
116] consisting of a pair of coaxial conducting cylinders
driven across an azimuthal slit encircling the outer cylin-
der at the midpoint (or alternatively, by an inductive
loop inserted between the cylinders [10]), and shorted
at both ends, with a longitudinal gap for the insertion
of the sample. This device is essentially a short-circuited
section of a two-conductor transmission line [30, pp.
482–485;31, pp. 213–214;32, pp. 365–377 and 396–
400;33, pp. 535–536] which can support standing TEM
waves, in which the electric vector E and the magnetic
vector H are perpendicular to each other as well as to
the Poynting vector S. The outer and inner cylinders
of the gapped toroid are the two conductors carrying



Fig. 1. Perspective view of the toroidal TEM resonator. We label the
three-dimensional axes with the Greek letters v, t, and f to prevent
confusion with the complex plane notation. In this view, the v-axis is
directed out of the paper toward the viewer.
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oscillating current in opposite directions. The excitation
current paths for this resonator are shown in Fig. 2.

This device is made self-resonant at the Larmor fre-
quency by setting its overall axial length equal to one
wavelength and driving it at the axial midpoint. The
voltage is nulled at the two ends where the resonator
is shorted, and hence another voltage null appears at
its axial midplane. Voltage and current in the ideal
Fig. 2. A cross-section of the toroidal TEM resonator, showing the
current paths. This resonator is best seen as a section of a two-
conductor transmission line, shorted at both ends and driven at the
midpoint. The gap providing sample access is seen to the right.
shorted resonator are out of phase by p/2, and the wave
undergoes a p phase shift at each end of the resonator,
thus the standing wave has maximum current (and
hence maximum B-field amplitude) in the midplane.
Each half of this resonator resembles the device pictured
in [33, p. 536], with the input loop located at the point
shown in position A.

A pure TEM mode is an idealization, since any prac-
tical device will excite some higher modes. In this device
the E field near the driving point is not always trans-
verse. However, the construction of the resonator and
the voltage null in the midplane ensures that E is very
small in that region. This condition, along with the
standing wave pattern within the resonator (since the
characteristic mode of operation of this resonator shape
is the fundamental TEM00, or cyclotron, mode), and the
fact that the higher (non-TEM) modes have cutoff fre-
quencies above those likely to be generated, guarantees
that very little energy goes into these modes if the
dimensions of the resonator are chosen carefully. We
have not attempted to model these higher modes.

If the cross-section of a TEM resonator is uniform
throughout its length in the direction of propagation
(the f-direction in Fig. 1), then itsB field has a simple rela-
tion to the potential of a static charge distribution on the
same geometry. The E field of the latter is simply the gra-
dient of the potential (from E = �$/). From the defini-
tion of the gradient, E is always directed perpendicular
to the equipotential curves. Since E and B are perpendic-
ular to each other on any transverse plane in aTEMwave,
it follows that the B field produced when the static charge
is replaced by a current flowing perpendicular to the plane
must be directed along that equipotential curve. Because
every magnetic field is divergence-free (or solenoidal;
since$ Æ B = 0) the contours ofB form closed loops about
the current source which are congruent with the equipo-
tentials. Thus, the static solution also gives the contours
of B, and the length of any such contour may be found
by integration and used to compute the magnitude of B
via Ampère�s law, while the direction of B is always along
the path of that contour.

This approach is justified by considering the charac-
teristics of purely harmonic propagation. If we define,
as in Fig. 1, a three-dimensional right-handed Cartesian
coordinate system (v,t,f) in which the wave propagates
in the f-direction, Maxwell�s equations reduce to the
Heaviside equations

o
2

of2
þ jxlðrþ jxe

� �
ET

HT

� �
¼ 0; ð1Þ

where l is the magnetic permeability in the constitutive
relation B = lH, x is angular frequency, r the electrical
conductivity, e the permittivity, and the subscript (T)
indicates that the field vectors are transverse to the
direction of propagation and thus in the vt-plane.
We use Greek letters for the coordinate axes to avoid
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confusion with the letters designating the complex
planes as introduced below. Eq. (1) have the solutions
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 !
e�jðcf�xtÞ;

ð2Þ
where c is the complex propagation constant. The B1

field then is

B1 ¼ lH0
Te

�jðcf�xtÞ � B1;0e
�jðcf�xtÞ. ð3Þ

The B1,0 field is identical to that produced by steady cur-
rents in the conducting surfaces of the resonator, and
the factor e�j(cf�xt) indicates the harmonic dependence
on f and t. Note that for lossless media c reduces to
the wave number k ¼ x

ffiffiffiffiffi
le

p
.

Fig. 3. The two complex planes used for the conformal transforma-
tion. At top is the z-plane on which the physical geometry is
represented; at bottom the rectangular w-plane to which it is mapped
by the logarithmic transformation.
2. Constructing the transforms

2.1. Physical representation

We define a complex z-plane (where z = x + jy) nor-
mal to the f-axis on which to model the physical geom-
etry. The gapped toroid is represented on z by two
concentric gapped circles (Fig. 3, top) representing the
cross-sections of the cylinders, of outer radius R2 and in-
ner radius R1. Computations are simplified by replacing
these physical radii with dimensionless radii r1 and r2,
where R1/r1 = R2/r2 and where the geometric mean of
r2 and r1 is set to unity:

r0 ¼
ffiffiffiffiffiffiffiffi
r1r2

p � 1. ð4Þ
The locus of points r = r0 (a unit circle on z) represents
the radial distance (located between the two gapped cir-
cles) at which the electric potential is zero when the
potentials on the gapped circles are equal and opposite.
Actual dimensions are found by multiplying the normal-
ized quantities by R2/r2 (or R1/r1) after the dimension-
less calculations are completed.

The circular geometry of the problem suggests using
complex polar coordinates on z:

xþ jy ¼ rejh;

x ¼ r cos h;

y ¼ r sin h.

ð5Þ

These equations can be inverted to obtain

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
h ¼ arctan

y
x

� �
.

ð6Þ

Since the gap has the same physical extent through both
circles while the circles have different diameters (see
Fig. 3, top), the gap in the inner circle subtends a larger
angle (h1) as measured from the x-axis than that in the
outer circle (h2). The physical distance from the x-axis
to the lip of the gap (the half-gap) is called G (see Fig.
3), and a dimensionless ratio g gives the relative size of
this half-gap as

g ¼ G
R2

ð7Þ

in terms of which h1 and h2 are given by

h1 ¼ arcsin g
r2
r1

� �
;

h2 ¼ arcsinðgÞ.
ð8Þ
2.2. The logarithmic transform

We now introduce a w-plane (where w = u + jv) to
which the physical geometry on z is mapped using the
logarithmic transform given by

w ¼ ln z;

u ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
;

v ¼ arctan
y
x

� �
.

ð9Þ

The solution found on w is transformed back to z with
the inverse (exponential) transform



Fig. 4. The family of confocal ellipses and hyperbolae around the
segment g = 0.
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z ¼ ew;

x ¼ eu cos v.

y ¼ eu sin v.

ð10Þ

In terms of the radial coordinates of Eqs. (6) and (9)
become

u ¼ ln r;

v ¼ h� p.
ð11Þ

Due to the periodicity of the azimuthal component,
the logarithmic transform maps the entire z-plane to a
strip on the interval u = [�1,+1], v = [�p,+p] on w,
mapping all circles concentric about the origin on z to
vertical line segments on [�p,+p]. The unit circle is
mapped to the v-axis (u = 0), larger circles to u > 0
and smaller circles to u < 0. The advantage of normaliz-
ing the geometric mean of r1 and r2 to unity (Eq. (4)) is
now apparent: the circle of radius r0 maps to the v-axis,
and the two circles on z are mapped to two vertical line
segments positioned symmetrically about the v-axis on
w, offset from u = 0 by normalized lengths u = ±d, given
by

d ¼ 1

2
ln
r2
r1
. ð12Þ

Likewise, the angular gaps in the cylinders on z are
mapped to gaps in the vertical line segments on w. From
Eq. (11), the angular measure of any arc on z (in radi-
ans) is numerically equal to the dimensionless vertical
length to which it is mapped on w, i.e., an arc of p/4
as measured from the x-axis on z transforms to a line
segment of height p/4 on w, and a complete circle on z
maps to a vertical line from �p to +p on w, the radius
of the circle being represented by the u-coordinate.

The definition of the angle h on z is also chosen to
simplify computation on w. Since the logarithmic trans-
form maps the �x-axis on z to the two discontinuous
boundaries at v = ±p on w, and the gap in the toroid
is the region of interest, we define h so that the transform
will map the region opposite the gap on z to the infini-
ties, displacing any discontinuity artifacts to points far
removed from the region of interest. This is imple-
mented by using v = h � p rather than the straightfor-
ward v = h in Eq. (11), thus setting h at �p on the
�x-axis, from whence it increases as it traverses the
plane in a counterclockwise direction, reaching zero on
the +x-axis, and terminating at +p as it returns to the
�x-axis. This choice has the effect of positioning the
gaps symmetrically about the +x-axis on z, so that they
will be mapped to the region about the w-origin (see Fig.
3, bottom), while the discontinuity at v = ±p then repre-
sents the region of the toroid opposite to the gap.

With these definitions, this transformation maps each
arc to a pair of vertically collinear segments separated
by a gap about v = 0. The +x-axis is transformed to
the entire u-axis (v = 0), and the negative �x-axis to
the discontinuous boundaries at v = ±p. In effect, the
z-plane is broken along the �x-axis to map the gap to
the central region on w, as if the w-plane that would
have resulted from a v = h transform were cut along
the u-axis and the top and bottom halves transposed.
The periodic nature of this transform permits another
visualization: since the entire pattern repeats with a per-
iod of 2p in the v-direction, the transpose can alterna-
tively be regarded as the center region of a wider plane
ranging from �2p to +2p in which the region from 0
to +2p exactly replicates the region from �2p to 0.

The lengths of the segments to which the arcs are
transformed (a1,a2) are given by

a1 ¼ p� h1;

a2 ¼ p� h2.
ð13Þ

Because the mapping is conformal, equipotential curves
about these segments map to equipotential curves about
the circular arcs when the transform is inverted.

2.3. Elliptical coordinates

The equipotentials of a line segment take the form of
a family of confocal ellipses (Fig. 4), the endpoints being
the common foci. This suggests introducing elliptical
coordinates [34] on w, where the radial coordinate g
and azimuthal coordinate w are defined by the equations

u ¼ a sinh g sinw;

v ¼ a cosh g cosw.
ð14Þ

where 2a is the distance between the common foci. The
line segment is a degenerate ellipse (e = 1, g = 0), and all
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values g > 0 represent ellipses of increasing size and
decreasing eccentricity (e = sechg). These confocal ellip-
ses are also the level curves of B about a current flowing
in that segment perpendicular to the plane. Since each
ellipse encloses the current source and the magnitude
of B is constant around any confocal ellipse, B is found
from Ampere�s law after calculating the arc length
around the ellipse (an elliptic integral).

The transposition of the top and bottom halves of w
described also transposes the equipotential curves. For
each set of ellipses, this transposition is best visualized
by cutting Fig. 4 along the x-axis and transposing the
top and bottom halves. The line segments a1 and a2 to
which the two arcs transform are thus the common focal
distances from the transposed origins for the two fami-
lies of ellipses. About these four segments are four sets
of half-ellipses in gi (i = 1,2,3,4), as shown in Fig. 5.
Inverting Eq. (14) gives these gi as functions of u and
v. We show here the inversion of g1, the other inversions
being easily obtained by the proper sign changes. Since
the magnitude of B is a function only of the gi we elim-
inate wi from the elliptical equations, yielding

u� d
sinh g1

� �2

þ v� p
cosh g1

� �2

¼ a22; ð15Þ

u� d
sinh g1

� �2

þ vþ p
cosh g1

� �2

¼ a22; ð16Þ

uþ d
sinh g1

� �2

þ v� p
cosh g1

� �2

¼ a21; ð17Þ
Fig. 5. The four sets of confocal ellipses around the four gi = 0 half-
strips. For clarity, only the lowest values of g are plotted. Note that
horizontal distances are expanded.
uþ d
sinh g1

� �2

þ vþ p
cosh g1

� �2

¼ a21. ð18Þ

After applying some trigonometric and hyperbolic iden-
tities [35] and invoking the quadratic formula, we obtain

g1 ¼
1

2
arccosh

(
ðu� dÞ2 þ ðv� pÞ2

a22

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� dÞ2 þ ðv� pÞ2

a22
� 1

" #2
þ 4ðu� dÞ2

a22

vuut
)

: ð19Þ

For B as a function of any point (x,y), we substitute for u
and v in the above fromEq. (10); forB (r,h), fromEq. (13).
3. Computing the magnetic field

3.1. Calculation of curve length

If the length of a level curve of B is known, the mag-
nitude of B on that curve is found from Ampere�s circu-
ital law in the simplified form

B ¼ lI
L
; ð20Þ

where L is the closed curve length. That length is found
by parametrizing the curve by w while holding g con-
stant and integrating the arc length formula

L ¼
Z 2p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ox
ow

� �2

þ oy
ow

� �2
s

dw. ð21Þ

Since x and y as functions of u and v, this integral ex-
pands to

L ¼
Z 2p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ox
ou

ou
ow

þ ox
ov

ov
ow

� �2

þ oy
ou

ou
ow

þ oy
ov

ov
ow

� �2
s

dw.

ð22Þ
To evaluate it, we calculate the derivatives of u and v

with respect to w:

ou
ow

¼ a sinh g cosw;

ov
ow

¼ �a cosh g sinw.
ð23Þ

Substituting from Eq. (10) gives the derivatives of x and
y with respect to u and v:

ox
ou

¼ o

ou
ðeu cos vÞ ¼ eu cos v ¼ x;

ox
ov

¼ o

ov
ðeu cos vÞ ¼ �eu sin v ¼ �y;

oy
ou

¼ o

ou
ðeu sin vÞ ¼ eu sin v ¼ y;

oy
ov

¼ o

ov
ðeu sin vÞ ¼ eu cos v ¼ x

ð24Þ



Fig. 6. Contours of constant B1 magnitude on the gapped toroid
cross-section. Note the artifactual hot spot at the back of the coil. Each
contour represents a change of 2% in field strength.
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as required by the Cauchy–Riemann conditions. Substi-
tuting Eqs. (23) and (24) into (22) and invoking the
appropriate trigonometric and hyperbolic identities, we
obtain

LðgÞ ¼ a
Z 2p

0

ea sinh g sinw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2gþ sin2w
� 	q

dw ð25Þ

This is the transformation of the elliptic integral, as it
gives the arc length around a curve formed by an ellipse
under an exponential transformation. To account for
both arcs we substitute a1 and a2 for a:

L1ðgÞ ¼ a1

Z 2p

0

ea1 sinh g sinw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsinh2gþ sin2wÞ

q
dw

L2ðgÞ ¼ a2

Z 2p

0

ea2 sinh g sinw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsinh2gþ sin2wÞ

q
dw

ð26Þ

Thus L, from which B is determined, is a function only
of g. Since there is no known evaluation of this integral
in terms of elementary functions, it must be integrated
numerically. The physical length is recovered from the
normalized values used above by multiplying the Li by
R2/r2, as described above.

3.2. Resolving the field into rectangular components

The two arcs represent cross-sections of cylinders car-
rying currents in opposite directions, each producing its
own magnetic field. The B1 field is the vector sum of these
two fields, and is found by resolving each field into com-
ponents (either r–h or x–y components on z), and adding
them componentwise. On each family of curves, B is
found by multiplying the Li (Eq. (26)) by R2/r2, as indi-
cated above, and substituting into Ampere�s law (Eq.
(20)), yielding four overlapping sets of contours, reducible
to two by reflective symmetry about the u-axis. Because
themapping is conformal (preservation of angles), the an-
gle between any pair of intersecting curves on w must
equal that between the images of those curves at the cor-
responding point on z. Thus the angle at which the level
g-curve intersects a u-parallel on w at any point w0 must
equal that at which the curve on z to which the g-curve
is transformed intersects a radial line at the point z0 to
which w0 is transformed. This angle, called n, is given by

n1 ¼ arctan � u� d
v� p

coth2g1

� �
ð27Þ

and, with the proper sign changes of d and p, for the
other families of gi curves. The x and y components of
Bi (i = 1, . . . , 4) are then given by:

Bx;i ¼ Bi cos ni;

By;i ¼ Bi sin ni.
ð28Þ

The B field is found by summation:

B ¼ Bx x
_þBy y

_ ¼ x
_ X4

1

Bx;i þ y
_ X4

1

By;i ð29Þ
where x
_

and y
_

are dimensionless rectangular unit vec-
tors. The level curves of the resultant B field on z are
shown in Fig. 6. Finally, the MRI-relevant standing
wave field is given by

B1 ¼ Be�jðcf�xtÞ; ð30Þ
where the f-coordinate represents the direction of prop-
agation. Note that this analysis could in principle have
been performed using r-h coordinates on z.
4. Results

We have implemented this solution in MATLAB and
FORTRAN (code available on request), using the diam-
eter of the outer cylinder, aspect ratio, gap size, current,
and the resolution of the computational grid as input
parameters. The output is the magnitude and direction
of the B1 field at every point in the cross-sectional plane.
The TEM condition is maintained as long as the separa-
tion between the two cylinders is not large enough to
represent a significant fraction of a wavelength. Input
parameters may be varied to investigate the effects on
B1 strength and homogeneity in the region of interest.
As long as the field is essentially TEM and the length
of the center-fed resonator equal to one wavelength,
the above solution need only be multiplied by e�j(cf�xt)

(Eq. (3)) to obtain the time-varying field. It is then pos-
sible to integrate over the field in the entire plane to
compute the oscillating power through the plane, and
from that the average energy density stored in the field.
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The Fortran routine written for this study was run on a
1000 · 1000 grid on an Athlon64 machine in under three
minutes, and Fig. 6 was produced with a massive
6000 · 6000 grid that required about an hour to run.

Our results are consistent with previously published
experimental results [9–11], showing that the resonator
establishes a near-homogeneous B1 field in the region
of the gap. The contours in Fig. 6 represent increments
of 2% in field magnitude. Repeated runs while varying
the parameters have shown that a relatively uniform
field can be produced even with a relatively large gap
and aspect ratio. The computation shows, in addition,
that the field is very small even at moderate distances
from the resonator: there is no need to compute the
fields beyond a normalized distance of 1.8 from the ori-
gin. As expected, the field diverges somewhat more rap-
idly for large gap and small aspect ratio. By integrating
over the slice in which B1 was computed, we determined
the energy stored in that field, and by comparing the en-
ergy in the entire plane with that in the annulus between
R1 and R2 we found that for almost every reasonable
combination of gap size and aspect ratio, about 90%
of the magnetic field energy is stored in the region of
interest between R1 and R2. This behavior is a conse-
quence of the confinement of the EM energy in this coil
design, where the resonating volume outside the sample
is almost completely enclosed by the conducting sur-
faces, allowing very little energy to be radiated away.
This is particularly important at high fields where every
exposed conductor, being a significant fraction of a
wavelength, behaves as an antenna and radiative losses
quickly become significant.
Fig. 7. Contours of constant B1 magnitude on a somewhat distorted
gapped toroid. Each contour represents a change of 2% in field
strength.
5. Discussion, applications, and future directions

The gapped toroid has several characteristics that suit
it uniquely for ultrahigh field MRI. The near-complete
enclosure of the resonating volume minimizes radiative
losses, giving the resonator an exceptionally high Q.
Its current path is distributed over the entire cylindrical
surface, minimizing resistive losses even at the small skin
depths encountered at high frequencies. In addition, it is
mechanically and electromagnetically simple: it does not
require the networks of capacitors or inductors used in
some RF coils, and does not generate the complex cur-
rent patterns that these elements often produce. These
characteristics make it a suitable starting point for fu-
ture ultrahigh field designs.

We have presented an analytic solution for the B1

field of the gapped toroid, which is exact if the axial
length is exactly equal to one wavelength and the arcs
are perfectly circular cylinders. Modeling ideal perfor-
mance is straightforward but can neither account di-
rectly for imperfections nor quantify the relation
between degree of imperfection and effect on perfor-
mance. Thus, it confirms the high performance available
from the gapped toroid design, but serves only mini-
mally as a guide to improving it. Nevertheless, it is the
basis for advanced designs, and the Vaughan patent sug-
gests several possible alterations to the basic design for
further performance improvements. These include
changes to the shape of the cylindrical cross-section,
changes to the gap aperture that include partial enclo-
sure, and filling the resonating volume with dielectric
material. Using the present algorithm we have modified
the gapped toroid by substituting a collapsed structure
for the inner cylinder (Fig. 7). The resulting B1 field
may be acceptable for some applications, but is not ide-
ally homogeneous. While graphical methods may in
principle extend the application of this algorithm [30,
pp. 86–93], a solution is not obtained merely by ‘‘flatten-
ing’’ the cross-section using a computer graphics pro-
gram, since this procedure does not preserve angles.
We are investigating a toroid of elliptical cross-section,
by analogy with an elliptical birdcage [20,36], using an
elliptical conformal transform based on the elliptical
coordinate system [34], in which the ellipses are trans-
formed to a rectangular system on which the field
solution is obtained. Similarly, a Cassinian oval cross-
section may be derived [34, pp. 52 and 62;37,38].

To investigate the advantages of greater enclosure, we
have introduced a toroid consisting of two complete cyl-
inders, the sample aperture being reduced to a circular
or oval hole cut through both cylinders. As expected,
this altered configuration reduces power consumption
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still further [11] but further restricts sample access.
Head, ankle, and breast images have been obtained with
this coil. Another possible improvement, dielectric filling
in the gapped toroid, was suggested in the Vaughan pat-
ent [10] and implemented by one of the authors [11]
using powdered titanium dioxide (TiO2) in rutile form.
This resonator used considerably less RF power than
comparable devices, due to the reduction of the reflec-
tion coefficient at the interface with human tissue [30,
pp. 382–388;39, pp. 278–282].

Finally, it is necessary to model the human body in
the coil under MRI conditions. The electrical properties
of human tissue are known [40] and numerical models of
the head and other body parts are now available [24,41–
44]. These models can be incorporated into a simulation
of the toroidal resonator used with the anatomy of inter-
est. We have found an analytic solution to the problem
of a homogeneous sphere in a uniform EM field [45],
assuming the radius of the sphere to be larger than the
EM wavelength within the sphere (consistent with the
highest fields now under consideration), and will use this
to develop a model of the resonator containing a human
head.
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